Minggu, 05 Desember 2010

aplikasi radioisotop dalam bidang energi

BAB I
PENDAHULUAN
Latar Belakang
Bagi sebagian golongan masyarakat radioisotop sebagai produk dan reaktor nuklir dianggap sebagai benda yang berbahaya yang kehadirannya harus dihindari. Radioisotop sebagai unsur yang mempunyai sifat memancarkan radiasi memang berpotensi berbahaya bagi manusia apabila penanganannya tidak mengikuti aturan dan ketentuan tentang proteksi radiasi. Namun, apabila radioisotop ini didayagunakan dengan memperhatikan aturan dan ketentuan tentang proteksi radiasi maka manfaatnya bagi manusia, bagi masyarakat dan bagi pembangunan negara adalah sangat besar. Teknik dengan mendayagunakan radioisotop merupakan teknik komplementair atau teknik terhadap teknik konvensional yang sudah digunakan dalam bidang lain.
Perlombaan negara-negara maju untuk bisa menguasai teknologi maju sudah dimulai sejak terjadinya peperangan baik perang dunia kesatu maupun kedua. Pada era perang dunia kedua, penguasaan teknologi nuklir memungkinkan negara-negara tersebut membuat kapal-kapal perang dengan berpendorong nuklir dan memasukan bahan-bakar nuklir ke dalam hulu ledak misilnya. Generasi pertama penggunaan energi nuklir adalah untuk tujuan militer seperti halnya sebuah reaktor pendorong kapal selam (submarine) (West, J.M. and W.K. Davis, 2001) milik US “Nautilus”, diikuti juga oleh uni soviet atau rusia saat ini dan senjata mematikan seperti bom atom yang pernah di jatuhkan di Hiroshima dan Nagasaki pada akhir perang dunia II. Selepas perang dunia kedua, dunia semakin sadar akan kehancurannya terutama akibat dijatuhkannya dua bom nuklir di Jepang yang menyebabkan banyak korban jiwa. Pengembangan energi nuklir untuk tujuan sipil seperti reaktor nuklir untuk pembangkit daya dimulai secara intensif setelah konferensi genewa “On the peaceful uses of atomic energy” yang disponsori oleh UN (PBB) tahun 1955. Teknologi nuklir untuk tujuan damai atau untuk menghasilkan listrik bagi penduduk telah dimulai pertama kalinya oleh pemerintah Rusia di daerah Obninsk, pada 27 Juni 1954 dengan daya 30 MW. Energi nuklir setelah era perang dunia kedua merupakan energi yang bertujuan kebutuhan sipil, seperti halnya untuk kebutuhan pertanian dan peternakan. Penggunaan teknologi nuklir juga bermanfaat pada peningkatan kesehatan dan kedokteran, serta kebutuhan industri. Teknologi nuklir yang lebih umum digunakan adalah untuk pembangkit tenaga listrik yang dapat membantu supply energi bagi listrik nasional khususnya.
Pembangkit listrik tenaga nuklir (PTLN) di dunia sampai 2006 berjumlah 442 buah yang sedang beroperasi secara komersial di 31 negara. Total daya yang dihasilkan 370 GWe yang berkontribusi 16% terhadap energi dunia. Jumlah reaktor nuklir komersial untuk energi di atas belum termasuk reaktor nuklir untuk tujuan riset dan pengembangan di pusat riset dan pengembangan, industri dan universitas. Amerika serikat mempunyai fasilitas PLTN terbanyak di dunia, yaitu sekitar 104 PLTN dengan kontribusi 20% listrik disana dari total kebutuhan energi listrik AS yang beroperasi di 30 negara bagian negara tersebut. Di beberapa negara lainya, kontribusi energi nuklir terhadap pasokan listrik nasional cukup signifikan dari total kebutuhan listrik nasional mereka seperti di Prancis sebanyak 75% dari total kebutuhan, Belgia 58%, Swedia 47%, Korea Selatan 43%, Hongaria 38%, Swiss 36%, Jerman 31%, Jepang 36%, Finlandia 33%, spanyol 30%, Inggris 29%, Republik Czech 20%, Kanada 13%, mexico 5%, belanda 4%, dan lain sebagainya. Saat ini sediktinya ada sekitar 27 PLTN baru yang dalam tahap pembangunan.













BAB II
PEMBAHASAN
Pengertian Radioisotop
Radioisotop adalah isiotop dari zat radioaktif, dibuat dengan menggunakan reaksi inti dengan netron. Isotop suatu unsur baik yang stabil maupun radioaktif memiliki sifat kimia yang sama. Radioisotop dapat digunakan sebagai perunut (untuk mengikuti unsur dalam suatu proses yang menyangkut senyawa atau sekelompok senyawa) dan sebagai sumber radiasi /sumber sinar. Pengunaan radioisotop sebagai perunut didasarkan pada ikatan bahwa isotop radioaktif mempunyai sifat kimia yang sama dengan isotop stabil. Radoisotop ditambahkan ke dalam suatu sistem untuk mempelajari sistem itu, baik sistem fisika, kimia maupun sistem biologi. Oleh karena radioisotop mempunyai sifat kimia yang sama seperti isotop stabilnya, maka radioisotop dapat digunakan untuk menandai suatu senyawa sehingga perpindahan perubahan senyawa itu dapat dipantau. Sedangkan penggunaan radioisotop sebagai sumber radiasi didasarkan pada kenyataan bahwa radiasi yang dihasilkan zat radioaktif dapat mempengaruhi materi maupun mahluk. Radiasi dapat digunakan untuk memberi efek fisis: efek kimia, maupun efek biologi.
Nuklir sebagai Sumber Energi Listrik
Nuklir merupakan istilah yang berhubungan dengan inti atom yang tersusun atas dua buah partikel fundamental, yaitu proton dan neutron. Di dalam inti atom terdapat tiga buah interaksi fundamental yang berperan penting, yaitu gaya nuklir kuat dan gaya elektromagnetik serta pada jangka waktu yang panjang terdapat gaya nuklir lemah. Gaya nuklir kuat merupakan interaksi antara partikel quark dan gluon yang dibahas dalam teori quantum chromodynamics (QCD) sedangkan gaya nuklir lemah adalah interaksi yang terjadi dalam skala inti atom seperti peluruhan beta yang dibahas dalam elecroweak theory.
Energi nuklir dihasilkan di dalam inti atom melalui dua buah jenis reaksi nuklir, yaitu reaksi fusi dan reaksi fisi. Reaksi fusi adalah suatu reaksi yang menggabungkan beberapa partikel atomik menjadi sebuah partikel atomik yang lebih berat. Reaksi fusi dapat menghasilkan energi yang sangat besar seperti yang terjadi pada bintang. Salah satu reaksi contoh reaksi fusi adalah penggabungan partikel deuterium (D atau 2H) dan tritium (T atau 3H). Langkah pertama, deuterium dan tritium dipercepat dengan arah yang saling mendekati pada suhu termonuklir. Penggabungan antara dua buah partikel tersebut membentuk helium-5 (5He) yang tidak stabil sehingga mengakibatkan peluruhan. Dalam proses peluruhan ini, sebuah neutron dan partikel helium-4 (4He) terhambur disertai dengan energi yang sangat besar, yaitu 14,1 MeV untuk penghamburan neutron dan 3,5 MeV untuk penghamburan helium-4. Sampai saat ini, reaksi fusi belum dapat dirancang oleh manusia karena membutuhkan suhu yang sangat tinggi. Hal ini menyebabkan pemanfaatan reaksi fusi sebagai sumber energi listrik belum dapat direalisasikan.
Reaksi nuklir lain yang sudah dapat dimanfaatkan sebagai sumber energi listrik adalah reaksi fisi. Reaksi fisi merupakan kebalikan dari reaksi fusi, yaitu reaksi yang membelah suatu partikel atomik menjadi menjadi beberapa partikel atomik lainnya dan sejumlah energi. Salah satu contoh dari reaksi fisi adalah reaksi fisi pada partikel uranium-235 (235U) yang ditumbuk oleh sebuah neutron yang bergerak pelan. Proses penyerapan neutron oleh uranium-235 mengakibatkan terbentuknya partikel uranium-236 (236U) yang tidak stabil sehingga terbelah menjadi partikel krypton-92 (92Kr), barium-141 (141Br), dan beberapa neutron bebas serta sejumlah energi. Reaksi fisi dapat berlangsung secara terus menerus yang biasa disebut dengan reaksi rantai. Dalam reaksi rantai, neutron yang telah terhambur dari reaksi fisi dapat mengakibatkan terjadinya reaksi fisi lain sama baiknya dengan reaksi fisi sebelumnya. Energi yang dihasilkan dari reaksi ini dapat dikonversi menjadi energi listrik pada sebuah pembangkit listrik tenaga nuklir (PLTN).
Tiga hal menarik yang terjadi pada proses reaksi fisi adalah sebagai berikut:
Peluang sebuah atom U-235 menangkap sebuah neutron bernilai sangat tinggi. Dalam sebuah reaktor yang bekerja (dikenal dengan keadaan kritis), sebuah neutron yang terhambur dari setiap reaksi fisi dapat menyebabkan terjadinya reaksi fisi yang lainnya.
Proses penyerapan dan penghamburan neutron terjadi dengan sangat cepat pada orde pikosekon (1×10-12 sekon)
Jumlah energi yang dihasilkan berupa panas dan radiasi gamma luar biasa besar pada sebuah reaksi fisi yang terjadi. Dalam reaksi ini terbentuk beberapa produk fisi dan neutron dengan massa total yang lebih ringan dari partikel U-235 pada awal reaksi. Perbedaan massa ini diubah menjadi energi dengan nilai yang dirumuskan dalam E = mc2. Dalam satu kali peluruhan atom U-235 bisa dihasilkan energi sebesar 200 MeV (1 eV = 1,6.10-19 joule). U-235 dapat bekerja dalam sebuah sampel uranium yang diperkaya menjadi 2 sampai 3 persen. Pada senjata nuklir, komposisi U-235 mencapai 90 persen atau lebih dari sebuah sampel uranium.
Pengertian PLTN
Pembangkit Listrik Tenaga Nuklir atau PLTN adalah sebuah pembangkit daya thermal yang menggunakan satu atau beberapa reaktor nuklir sebagai sumber panasnya. Prinsip kerja sebuah PLTN hampir sama dengan sebuah Pembangkilt Listrik Tenaga Uap, menggunakan uap bertekanan tinggi untuk memutar turbin. Putaran turbin inilah yang diubah menjadi energi listrik. Perbedaannya ialah sumber panas yang digunakan untuk menghasilkan panas. Sebuah PLTN menggunakan Uranium sebagai sumber panasnya. Reaksi pembelahan (fisi) inti Uranium menghasilkan energi panas yang sangat besar. Daya sebuah PLTN berkisar antara 40 Mwe sampai mencapai 2000 MWe, dan untuk PLTN yang dibangun pada tahun 2005 mempunyai sebaran daya dari 600 MWe sampai 1200 MWe. Sampai tahun 2006 terdapat 443 PLTN yang beroperasi di dunia, yang secara keseluruhan menghasilkan daya sekitar 1/6 dari energi listrik dunia.
Pembangkit listrik tenaga nuklir (PLTN) menyediakan sekitar 17 persen dari total tenaga listrik dunia. Beberapa negara membutuhkan tenaga nuklir yang lebih besar dari negara lain. Di Prancis, menurut International Atomic Energy Agency (IAEA), 75 persen tenaga listriknya dihasilkan oleh reaktor nuklir. Jumlah pembangkit tenaga listrik di dunia diperkirakan lebih dari 400 buah dengan 100 buah diantaranya berada di Amerika Serikat.

Pada PLTN, bahan bakar sebuah reaktor nuklir berupa uranium. Uranium merupakan salah satu hasil tambang yang terdapat di bumi. Uranium-238 (U-238) mempunyai waktu paruh yang sangat lama (4,5 milyar tahun) dengan komposisi 99 persen dari total uranium yang ada di bumi. Komposisi lainnya, U-235 mempunyai sekitar 0,7 persen dan U-234 jauh lebih rendah yang dibentuk melalui proses peluruhan U-238 (U-238 melalui beberapa tahap peluruhan alpha dan beta untuk membentuk isotop yang lebih stabil dan U-234 adalah salah satu hasil dari mata rantai dari peluruhan ini).
Dalam sebuah reaktor nuklir, butiran uranium yang sudah diperkaya disusun dalam sebuah balok dan dikumpulkan ke dalam bundelan (reactor). Bundelan tersebut direndam dalam air pada sebuah bejana tekan (pada tekanan 70-150 atm). Air tersebut digunakan sebagai sebuah pendingin. Bundelan uranium yang digunakan pada reaktor nuklir berada dalam keadaan superkritis. Hal ini dapat menyebabkan uranium menjadi panas dan meleleh dengan mudah. Untuk mencegahnya, sebuah balok kontrol (control rods) dibuat dengan bahan yang menyerap neutron. Balok kontrol dimasukkan kedalam bundelan uranium dengan menggunakan sebuah mekanisme yang dapat mengangkat atau menurunkan balok kontrol tersebut. Pengangkatan dan penurunan balok kontrol menerima perintah seorang operator untuk mengatur jumlah reaksi nuklir. Ketika seorang operator menginginkan inti uranium untuk menghasilkan panas yang lebih, balok kontrol dinaikkan dari bundelan uranium. Sebaliknya, jika ingin panas berkurang maka balok kontrol harus diturunkan. Balok kontrol dapat diturunkan hingga komplit untuk menghentikan reaktor nuklir jika terjadi kasus kecelakaan atau penggantian bahan bakar.
Bundelan uranium digunakan sebagai sumber energi panas yang sangat tinggi. Panas ini dapat mengubah air menjadi uap air. Uap air ini digunakan untuk menggerakkan sebuah turbin uap yang memutar rotor pada generator. Berdasarkan hukum Faraday putaran rotor dikonversi menjadi tenaga listrik. Dalam beberapa reaktor, uap air akan melalui tahap kedua sebagai pengubah panas medium untuk mengubah air menjadi uap air yang menggerakkan turbin. Keuntungan dari desain ini adalah air atau uap air yang tercemar bahan radioaktif tidak akan mengenai turbin. Dalam reaktor nuklir yang sama, fluida pendingin dalam kontak dengan inti reaktor dapat berupa gas (karbon dioksida) atau logam cair (sodium, potasium). Tipe reaktor ini menerima inti uranium untuk beroperasi pada suhu yang lebih tinggi.
Ketidakberuntungan dalam PLTN dapat membuat masalah yang besar diantaranya:
Penambangan dan pemurnian uranium, berdasarkan sejarah, tidak mempunyai proses yang cukup bersih.
Penggunaan PLTN yang tidak tepat dapat menimbulkan masalah yang besar. Tragedi Chernobyl dapat digunakan sebagai contoh yang tepat. Chernoyl didesain dengan seadanya dan dioperasikan dengan tidak tepat sehingga mengakibtakan skenario kasus yang paling buruk. Beberapa ton debu radioaktif terhambur ke atmosfer dalam tragedy ini.
Limbah PLTN merupakan racun yang dapat bertahan dalam ratusan tahun dan hal ini tidak aman jika tidak digunakan fasilitas penyimpanan yang permanent untuk ini.
Transportasi bahan bakar nuklir dari dan ke PLTN mempunyai beberapa resiko tetapi selama ini track record di Amerika Serikat menunjukkan hasil yang sangat baik.
Di dalam inti atom tersimpan tenaga inti (nuklir) yang luar biasa besarnya. Tenaga nuklir itu hanya dapat dikeluarkan melalui proses pembakaran bahan bakar nuklir. Proses ini sangat berbeda dengan pembakaran kimia biasa yang umumnya sudah dikenal, seperti pembakaran kayu, minyak dan batubara. Besar energi yang tersimpan (E) di dalam inti atom adalah seperti dirumuskan dalam kesetaraan massa dan energi oleh Albert Einstein : E = m C2, dengan m : massa bahan (kg) dan C = kecepatan cahaya (3 x 108 m/s). Energi nuklir berasal dari perubahan sebagian massa inti dan keluar dalam bentuk panas.
Dilihat dari proses berlangsungnya, ada dua jenis reaksi nuklir, yaitu reaksi nuklir berantai tak terkendali dan reaksi nuklir berantai terkendali. Reaksi nuklir tak terkendali terjadi misal pada ledakan bom nuklir. Dalam peristiwa ini reaksi nuklir sengaja tidak dikendalikan agar dihasilkan panas yang luar biasa besarnya sehingga ledakan bom memiliki daya rusak yang maksimal. Agar reaksi nuklir yang terjadi dapat dikendalikan secara aman dan energi yang dibebaskan dari reaksi nuklir tersebut dapat dimanfaatkan, maka manusia berusaha untuk membuat suatu sarana reaksi yang dikenal sebagai reaktor nuklir. Jadi reaktor nuklir sebetulnya hanyalah tempat dimana reaksi nuklir berantai terkendali dapat dilangsungkan. Reaksi berantai di dalam reaktor nuklir ini tentu sangat berbeda dengan reaksi berantai pada ledakan bom nuklir.
Sejarah pemanfaatan energi nuklir melalui Pusat Listrik Tenaga Nuklir (PLTN) dimulai beberapa saat setelah tim yang dipimpin Enrico Fermi berhasil memperoleh reaksi nuklir berantai terkendali yang pertama pada tahun 1942. Reaktor nuklirnya sendiri sangat dirahasiakan dan dibangun di bawah stadion olah raga Universitas Chicago. Mulai saat itu manusia berusaha mengembangkan pemanfaatan sumber tenaga baru tersebut. Namun pada mulanya, pengembangan pemanfaatan energi nuklir masih sangat terbatas, yaitu baru dilakukan di Amerika Serikat dan Jerman. Tidak lama kemudian, Inggris, Perancis, Kanada dan Rusia juga mulai menjalankan program energi nuklirnya.
Listrik pertama yang dihasilkan dari PLTN terjadi di Idaho, Amerika Serikat, pada tahun 1951. Selanjutnya pada tahun 1954 PLTN skala kecil juga mulai dioperasikan di Rusia. PLTN pertama di dunia yang memenuhi syarat komersial dioperasikan pertama kali pada bulan Oktober 1956 di Calder Hall, Cumberland. Sistim PLTN di Calder Hall ini terdiri atas dua reaktor nuklir yang mampu memproduksi sekitar 80 juta Watt tenaga listrik. Sukses pengoperasian PLTN tersebut telah mengilhami munculnya beberapa PLTN dengan model yang sama di berbagai tempat.
Prinsip Kerja PLTN



Proses kerja PLTN sebenarnya hampir sama dengan proses kerja pembangkit listrik konvensional seperti pembangkit listrik tenaga uap (PLTU), yang umumnya sudah dikenal secara luas. Yang membedakan antara dua jenis pembangkit listrik itu adalah sumber panas yang digunakan. PLTN mendapatkan suplai panas dari reaksi nuklir, sedang PLTU mendapatkan suplai panas dari pembakaran bahan bakar fosil seperti batubara atau minyak bumi.
Reaktor daya dirancang untuk memproduksi energi listrik melalui PLTN. Reaktor daya hanya memanfaatkan energi panas yang timbul dari reaksi fisi, sedang kelebihan neutron dalam teras reaktor akan dibuang atau diserap menggunakan batang kendali. Karena memanfaatkan panas hasil fisi, maka reaktor daya dirancang berdaya thermal tinggi dari orde ratusan hingga ribuan MW. Proses pemanfaatan panas hasil fisi untuk menghasilkan energi listrik di dalam PLTN adalah sebagai berikut :
Bahan bakar nuklir melakukan reaksi fisi sehingga dilepaskan energi dalam bentuk panas yang sangat besar.
Panas hasil reaksi nuklir tersebut dimanfaatkan untuk menguapkan air pendingin, bisa pendingin primer maupun sekunder bergantung pada tipe reaktor nuklir yang digunakan.
Uap air yang dihasilkan dipakai untuk memutar turbin sehingga dihasilkan energi gerak (kinetik).
Energi kinetik dari turbin ini selanjutnya dipakai untuk memutar generator sehingga dihasilkan arus listrik.
Jenis-Jenis PLTN
Teknologi PLTN dirancang agar energi nuklir yang terlepas dari proses fisi dapat dimanfaatkan sebagai sumber energi dalam kehidupan sehari-hari. PLTN merupakan sebuah sistim yang dalam operasinya menggunakan reaktor daya yang berperan sebagai tungku penghasil panas. Dewasa ini ada berbagai jenis PLTN yang beroperasi. Perbedaan tersebut ditandai dengan perbedaan tipe reaktor daya yang digunakannya. Masing-masing jenis PLTN/tipe reaktor daya umumnya dikembangkan oleh negara-negara tertentu, sehingga seringkali suatu jenis PLTN sangat menonjol dalam suatu negara, tetapi tidak dioperasikan oleh negara lain. Perbedaan berbagai tipe reaktor daya itu bisa terletak pada penggunaan bahan bakar, moderator, jenis pendinging serta perbedaan-perbedaan lainnya.
Perbedaan jenis reaktor daya yang dikembangkan antara satu negara dengan negara lain juga dipengaruhi oleh tingkat penguasaan teknologi yang terkait dengan nuklir oleh masing-masing negara. Pada awal pengembangan PLTN pada tahun 1950-an, pengayaan uranium baru bisa dilakukan oleh Amerika Serikat dan Rusia, sehingga kedua negara tersebut pada saat itu sudah mulai mengembangkan reaktor daya berbahan bakar uranium diperkaya. Sementara itu di Kanada, Perancis dan Ingris pada saat itu dipusatkan pada program pengembangan reaktor daya berbahan bakar uranium alam. Oleh sebab itu, PLTN yang pertama kali beroperasi di ketiga negara tersebut menggunakan reaktor berbahan bakar uranium alam. Namun dalam perkembangan berikutnya, terutama Inggris dan Perancis juga mengoperasikan PLTN berbahan bakar uranium diperkaya.
Sebagian besar reaktor daya yang beroperasi dewasa ini adalah jenis Reaktor Air Ringan atau LWR (Light Water Reactor) yang mula-mula dikembangkan di AS dan Rusia. Disebut Reaktor Air Ringan karena menggunakan H2O kemurnian tinggi sebagai bahan moderator sekaligus pendingin reaktor. Reaktor ini terdiri atas Reaktor Air tekan atau PWR (Pressurized Water Reactor) dan Reaktor Air Didih atau BWR (Boiling Water Reactor) dengan jumlah yang dioperasikan masing-masing mencapai 52 % dan 21,5 % dari total reaktor daya yang beroperasi. Sedang sisanya sebesar 26,5 % terdiri atas berbagai type reaktor daya lainnya.
Reaktor BWR
Pada reactor BWR hanya terdapat satu sirkuit aliran pendingin yang bertekanan rendah (sekitar 75 atm) sehingga aliran pendingin tersebut dapat mendidih di dalam teras mencapai suhu 285oC. Uap yang dihasilkan tersebut mengalir menuju perangkat pemisah dan pengering uap yang terletak di atas teras kemudian menuju turbin. Karena air yang berada di sekitar teras selalu mengalami kontaminasi oleh peluruhan radionuklida, maka turbin harus diberi perisai dan perlindungan radiasi sewaktu masa pemeliharaan. Kebanyakan zat radioaktif yang terdapat pada air tersebut beumur paro sangat singkat, misalnya N-16 dengan umur paro 7 detik sehingga ruang turbin dapat dimasuki sesaat setelah reaktor dipadamkan. Uap tersebut kemudian memasuki turbin-generator. Setelah turbin digerakkan, uap diembunkan di kondenser menjadi aliran pendingin, kemudian dipompa ke reaktor dan memulai siklus kembali seperti di atas.

Gambar Skema Reaktor Boiling Water Reactor (BWR)
Reaktor Air Didih Lanjut (Advanced Boiling Water Reactor, ABWR)
ABWR adalah reaktor air didih lanjut, yaitu tipe modifikasi dari reaktor air didih yang ada pada saat ini. Perbaikan ditekankan pada keandalan, keselamatan, limbah yang rendah, kemudahan operasi dan faktor ekonomi. Perlengkapan khas ABWR yang mengalami perbaikan desain adalah (1) pompa internal, (2) penggerak batang kendali, (3) alat pengatur aliran uap, (4) sistem pendinginan teras darurat, (5) sungkup reaktor dari beton pra-tekan, (6) turbin, (7) alat pemanas untuk pemisah uap (penurun kelembaban), (8) sistem kendali dijital dan lain-lain.
Reaktor CANDU
Reaktor CANDU atau CANada Deuterium Uranium adalah jenis reaktor air berat bertekanan yang menggunakan Uranium alam oksida sebagai bahan bakar. Reaktor ini dirancang oleh Atomic Energy Canada Limited (AECL) semenjak tahun 1950 di Kanada. Karena menggunakan bahan bakar Uranium alam, maka reaktor ini membuthkan moderator yang lebih efisien seperti air berat

Gambar Skema Reaktor CANDU atau CA Nada Deuterium Uranium
Moderator reaktor CANDU terletak pada tangki besar yang disebut calandria, yang disusun oleh tabung-tabung bertekanan horisontal yang digunakan sebagai tempat bahan bakar, didinginkan oleh aliran air berat bertekanan tinggi yang mengalir melewati tangki calandria ini sampai mencapai suhu 290oC. Sama seperti Reaktor PWR, uap dihasilkan oleh aliran pendingin sekunder yang mendapat panas dari aliran pendingin utama. Dengan digunakannya tabung-tabung bertekanan sebagai tempat bahan bakar, memungkinkan untuk mengisi bahan bakar tanpa memadamkan reaktor dengan memisahkan tabung bahan bakar yang akan diisi dari aliran pendingin.
Reaktor tabung tekan
Reaktor tabung tekan merupakan reaktor yang terasnya tersusun atas pendingin air ringan (ada juga air berat) dan moderator air berat atau pendingin air ringan dan moderator grafit dalam pipa kalandria. Bahan pendingin dan bahan moderator dipisahkan oleh pipa tekan, sehingga bahan pendingin dan bahan moderator dapat dipilih secara terpisah. Pada kenyataannya terdapat variasi gabungan misalnya pendingin air ringan moderator air berat (Steam-Generating Heavy Water Reactor, SGHWR), pendingin air berat moderator air berat (Canadian Deuterium Uranium, CANDU), pendingin air ringan moderator grafit (Channel Type Graphite-moderated Water-cooled Reactor, RBMK). Teras reaktor terdiri dari banyak kanal bahan bakar dan dideretkan berbentuk kisi kubus di dalam tangki kalandria, bahan pendingin mengalir masing-masing di dalam pipa tekan, energi panas yang timbul pada kanal bahan bakar diubah menjadi energi penggerak turbin dan digunakan pada pembangkit listrik. Disebut juga rektor nuklir tipe kanal.
Pebble Bed Modular Reactor (PBMR)
Reaktor PBMR menawarkan tingkat keamanan yang baik. Proyek PBMR masa kini merupakan lanjutan dari usaha masa lalu dan dipiloti oleh konglomerat internasional USA berbasis Exelon Corporation (Commonwealth Edison PECO Energy), British Nuclear Fuels Limited dan South African based ESKOM sebagai perusahaan reaktor.

Gambar Skema PBMR
PBMR menggunakan helium sebagai pendingin reaktor, berbahan bakar partikel uranium dioksida yang diperkaya, yang dilapisi dengan Silikon Karbida berdiameter kurang dari 1mm, dirangkai dalam matriks grafit. Bahan bakar ini terbukti tahan hingga suhu 1600oC dan tidak akan meleleh di bawah 3500oC. Bahan bakar dalam bola grafit akan bersirkulasi melalui inti reaktor karena itu disebut sistem pebble-bed.
Reaktor Magnox

Gambar Skema Reaktor Magnox
Reaktor Magnox merupakan reaktor tipe lama dengan siklus bahan bakar yang sangat singkat (tidak ekonomis), dan dapat menghasilkan plutonium untuk senjata nuklir. Reaktor ini dikembangkan pertama sekali di Inggris dan di Inggris terdapat 11 PLTN dengan menggunakan 26 buah reaktor Magnox ini. Sampai tahun 2005 ini, hanya tinggal 4 buah reaktor Magnox yang beroperasi di Inggris dan akan didekomisioning pada tahun 2010.
Reaktor Magnox menggunakan CO2 bertekanan sebagai pendingin, grafit sebagai moderator dan berbahan bakar Uranium alam dengan logam Magnox sebagai pengungkung bahan bakarnya. Magnox merupakan nama dari logam campuran yaitu dengan logam utama Magnesium dengan sedikit Aluminium dan logam lainnya, yang digunakan sebagai pengungkung bahan bakar logam Uranium alam dengan penutup yang tidak mudah teroksidasi untuk menampung hasil fisi.
Advanced Gas-cooled Reactor (AGR)
Advanced Gas-Cooled Reactor (AGR) merupakan reaktor generasi kedua dari reaktor berpendingin gas yang dikembangkan Inggris. AGR merupakan pengembangan dari reaktor Magnox. Reaktor ini menggunakan grafit sebagai moderator netron, CO2 sebagai pendingin dan bahan bakarnya adalah pelet Uranium oksida yang diperkaya 2,5%-3,5% yang dikungkung di dalam tabung stainless steel. Gas CO2 yang mengalir di teras mencapai suhu 650oC dan kemudian memasuki tabung generator uap. Kemudian uap yang memasuki turbin akan diambil panasnya untuk menggerakkan turbin. Gas telah kehilangan panas masuk kembali ke teras.

Gambar Skema Advanced Gas-cooled Reactor (AGR)
Russian Reaktor Bolshoi Moshchnosty
RBMK merupakan singkatan dari Russian Reaktor Bolshoi Moshchnosty Kanalny yang berari reaktor Rusia dengan saluran daya yang besar. Pada tahun 2004 masih terdapat beberapa reaktor RMBK yang masih beroperasi, namun tidak ada rencana untuk membangun reaktor jenis ini lagi. Keunikan reaktor RBMK terdapat pada moderator grafitnya yang dilengkapi dengan tabung untuk bahan bakar dan tabung untuk aliran pendingin.

Gambar Skema RBMK
Pada rancangan reaktor RBMK, terjadi pendidihan aliran pendingin di teras samapi mencapai suhu 290°C. Uap yang dihasilkan kemudian masuk ke perangkat pemisah uap yang memisahkan air dari uap. Uap yang telah dipisahkan kemudian mengalir menuju turbin, seperti pada rancangan reaktor BWR. Masalah yang dihadapi pada BWR yaitu uap yang dihasilkan bersifat radioaktif juga terjadi pada reaktor ini. Namun, dengan adanya pemisahan uap, maka terdapat waktu jeda yang menurunkan radiasi di sekitar turbin. Dengan menggunakan moderasi netron yang sangat bergantung pada grafit, apabila terjadi pendidihan yang berlebihan, maka aliran pendingin akan berkurang sehingga penyerapan netron juga berkurang, tetapi reaksi fisi akan semakin cepat sehingga dapat menimbulkan kecelakaan
Pressurized Water Reactor (PWR)
PWR adalah jenis reaktor daya nuklir yang menggunakan air ringan biasa sebagai pendingin maupun moderator neutron. Reaktor ini pertama sekali dirancang oleh Westinghouse Bettis Atomic Power Laboratory untuk kepentingan kapal perang, tetapi kemudian rancangan ini dijadikan komersial oleh Westinghouse Nuclear Power Division. Reaktor PWR komersial pertama dibangun di Shippingport, Amerika Serikat yang beroperasi sampai tahun 1982. Selain Westinghouse, banyak perusahaan lain seperti Asea Brown Boveri-Combustion Engineering (ABB-CE), Framatome, Kraftwerk Union, Siemens, and Mitsubishi yang mengembangkan dan membangun reaktor PWR ini. Reaktor jenis ini merupakan jenis reaktor yang paling umum. Lebih dari 230 buah reaktor digunakan untuk menghasilkan listrik, dan beberapa ratus lainnya digunakan sebagai tenaga penggerak kapal.

Gambar Skema Reaktor Pressurized Water Reactor (PWR)
Pada reaktor jenis PWR, aliran pendingin utama yang berada di teras reaktor bersuhu mencapai 325oC sehingga perlu diberi tekanan tertentu (sekitar 155 atm) oleh perangkat pressurizer sehingga air tidak dapat mendidih. Pemindah panas, generator uap, digunakan untuk memindahkan panas ke aliran pendingin sekunder yang kemudian mendidih menjadi uap air dan menggerakkan turbin untuk menghasilkan listrik. Uap kemudian diembunkan di dalam kondenser menjadi aliran pendingin sekunder. Aliran ini kembali memasuki generator uap dan menjadi uap kembali, memasuki turbin, dan demikian seterusnya
Boiling water reactor (BWR)
Reaktor jenis BWR merupakan rancangan reaktor jenis air ringan sebagai pendingin dan moderator, yang juga digunakan di beberapa Pembangkit Listrik Tenaga Nuklir. Reaktor BWR pertama sekali dirancang oleh Allis-Chambers dan General Electric (GE). Sampai saat ini, hanya rancangan General Electric yang masih bertahan. Reaktor BWR rancangan General Electric dibangun di Humboldt Bay di California. Perusahaan lain yang mengembangkan dan membangun reaktor BWR ini adalah ASEA-Atom, Kraftwerk Union, Hitachi. Reaktor ini mempunyai banyak persamaan dengan reaktor PWR; perbedaan yang paling kentara ialah pada reaktor BWR, uap yang digunakan untuk memutar turbin dihasilkan langsung oleh teras reaktor.
Tugas utama Keselamatan Reaktor
Tugas utama keselamatan reaktor adalah mencegah terlepasnya zat-zat radioaktif ke lingkungan baik dalam keadaan operasi normal, gangguan maupun kecelakaan. Tugas ini dilakukan oleh sistem keselamatan raktor.
Filosofi keselamatan reaktor adalah “gagal selamat” artinya bila reaktor beroperasi tidak normal sistem keselamatan segera mematikan reaktor dan mengambil tindakan pengamanan secara otomatis. Tujuannya adalah elemen bakar selalu memperoleh pendinginan yang cukup sehingga integritasnya selalu terjaga dan pelepasan zat radioaktif terhindarkan. Oleh karena itu sistem keselamatan reaktor harus mempunyai keandalan yang tinggi. Dia harus berfungsi dalam setiap saat dan setiap keadaan termasuk keadaan bila terjadi bencana alam seperti gempa bumi.
Keandalan yang tinggi ini dicapai dengan jalan:
Kontrol kualitas yang ketat setiap komponen reaktor dari pembuatan sampai pemasangan dengan pengesetan berulang-ulang dengan berbagai cara.
Inspeksi kontinyu selama beroperasi
Didesain dengan prinsip ganda yaitu diversiter dan redudan Diversiter artinya beberapa sistem yang berbeda tetapi mempunyai tugas yang sama. Redudan artiya perangkap sistem dan komponen
Analisis keselamatan yang berisi tanggapan reaktor terhadap gangguan dan kecelakaan yang mungkin terjadi termasuk resikonya. Analisis ini harus menunjukkan bahwa reaktor hanya akan memberikan resiko dibawah batas yang diijinkan meskipun dalam keadaan kecelakaan.
Sistem Keselamatan Berlapis
Dalam teknologi reaktor dikenal istilah sistem keselamatan berlapis yaitu lapisan penghalang terlepasnya zat radioaktif ke lingkungan. Sebagai gambaran disajikan sistem penghalang pada suatu reaktor daya, yaitu:
Kristal bahan bakar
Kelongsong elemen bakar
Bejana tekan
Bejana keselamatan
Sistem penahan gas dan cairan aktif
Perisai biologis
Gedung reaktor
Sistem tekanan negatif
Bila prisisp-prisip keselamatan ini digunakan dalam pembangunan reaktor, niscaya keselamatan operasi reaktor akan terjamin. Untuk reaktor kecil seperti reaktor riset sistem keselamatannya tidak selengkap reaktor daya.




Baterai Nuklir
Disamping keuntungan radioisotope di PLTN, para ahli pada saat ini juga sedang melengkapi kemampuan energi nuklir untuk menghasilkan tenaga listrik arus searah (tenaga baterai/DC), tidak hanya tenaga listrik arus bolak-balik (AC) seperti yang sudah dikenal selama ini melalui PLTN. Cara lain yang dimaksud adalah tidak dengan memanfaatkan panas dari hasil reaksi fisi maupun fusi, akan tetapi memanfaatkan proses terjadinya reaksi peluruhan (decay process) pada setiap bahan radioaktif. Pada reaksi peluruhan ini yang dimanfaatkan adalah radiasi nuklir itu sendiri yang disertai dengan pelepasan elektron atau muatan listrik dan juga kemampuan menumbuk bahan untuk menghasilkan elektron sekunder yang dapat diubah menjadi tenaga listrik. Bila hal ini bisa direalisasikan maka tenaga listrik yang diperoleh dari hasil proses peluruhan zat radioaktif akan dapat menambah sumber tenaga listrik arus searah, disamping sumber arus searah (tanaga baterai) yang telah dikenal secara konvensional berupa baterai kimia sel basah maupun sel kering.
Pemanfaatan energi nuklir untuk diubah menjadi tenaga listrik arus searah (DC) adalah karena timbulnya elektron atau muatan listrik pada peristiwa peluruhan zat radioaktif. Oleh karena itu, sumber arus searah baterai nuklir ini berasal dari radioisotop yang memancarkan radiasi Alpha, Beta Negatif maupun Beta Positif. Mengingat daya tembus radiasi Alpha sangat kecil, maka radioisotop pemancar Alpha jarang digunakan, karena menyulitkan dalam proses pembuatannya, kecuali bila akan dimanfaatkan untuk mengionisasi langsung medium baterai nuklir. Radioisotop pemancar Beta Positif (β+) jarang digunakan sebagai sumber tenaga baterai nuklir karena sumber baterai nuklir adalah radioisotop pemancar radiasi Beta Negatif (β-). Kemampuan sumber radiasi untuk menghasilkan elektron sekunder dalam tumbukannya dengan medium baterai nuklir, juga dipakai sebagai bahan pertimbangan dalam memilih sumber radioisotop. Penelitian dan pengembangan pembuatan baterai nuklir sangat menarik perhatian para ahli, karena tegangan yang diperoleh dari baterai nuklir relatif konstan dan bisa mencapai orde beberapa ribu volt, sehingga sangat menguntungkan dalam pemakaiannya. Sedangkan umur pakainya sangat panjang, bisa mencapai 2 kali waktu paro radioisotop yang digunakan. Namun demikian, efisiensinya dan arus yang dihasilkan sejauh ini masih rendah, untuk itu perlu ditingkatkan lebih jauh lagi.
Mengingat bahwa nuclear barrier transmission merupakan fungsi dari massa radioisotop yang digunakan dan energi kinetik radiasi yang dipancarkan, maka usaha untuk meningkatkan arus harus memperhatikan sumber radioisotop yang digunakan dan juga energi kinetik radiasinya.
Berbagai macam model baterai nuklir yang sudah dikembangkan sejauh ini adalah sebagai berikut;
Baterai nuklir “high speed electrons battery”:
Baterai ini dinamakan juga dengan baterai nuklir Beta, sesuai dengan jenis radiasi yang dipancarkan oleh radioisotop yang digunakan. Baterai nuklir ini bisa menghasilkan tegangan sampai beberapa ribu volt. Tegangan yang tinggi ini dipengaruhi oleh kerapatan isolator yang digunakan, sehingga tidak terjadi kebocoran yang dapat menimbulkan ionisasi udara di sekitar terminal elektrodenya. Arus yang dihasilkan masih rendah dan perlu dinaikkan lagi dengan memperhatikan masalah nuclear barrier transmission seperti yang diuraikan di atas. Radioisotop yang digunakan dalam baterai ini adalah Strontium-90 (Sr90) yang mempunyai waktu paro 28 tahun, sehingga umur pakai baterai nuklir jenis ini bisa dua kali waktu paronya, yaitu 56 tahun.
Baterai nuklir “contact potential difference battery”
Baterai nuklir ini sering disingkat dengan baterai CPD (Contact Difference Potential). Elektrode yang digunakan adalah 2 jenis bahan logam yang mempunyai sifat “work function” yang sangat berbeda. Work function suatu bahan adalah energi yang diperlukan untuk membebaskan elektron keluar orbitnya. Bahan elektrode yang mempunyai sifat work function yang sangat jauh berbeda adalah Seng (Zn) dan Karbon. Ruang diantara kedua elektrode, yaitu antara bahan logam yang mempunyai sifat “work function” tinggi dan bahan logam yang mempunyai “work function” rendah, diisi medium berbentuk gas, yaitu Tritium yang setiap saat dapat diionisasikan oleh radioisotop menghasilkan elektron dan ion positif. Hasil ionisasi (elektron dan ion) akan menuju ke masing-masing elektrodenya sesuai dengan muatan listrik yang dibawanya. Penyerahan muatan listrik ke masing-masing elektrode akan menimbulkan arus listrik searah secara berkesinambungan. Radioisotop yang digunakan sama dengan baterai nuklir pertama, yaitu Strontium 90 (Sr90). Bagan baterai nuklir CPD dapat dilihat pada Gambar 2.
Baterai nuklir PN junction
Baterai nuklir ini memanfaatkan sifat radioisotop yang dapat menimbulkan berondongan elektron (avalanche) pada salah satu elemen diode semikonduktor yang dipasang di dalam wadah baterai. Bahan semikonduktor yang dapat menghasilkan berondongan elektron akibat terkena radiasi adalah Antimon. Sedangkan untuk elektrode positifnya digunakan Silikon. Berondongan elektron yang terbentuk akan ditarik oleh elektrode positif dan pada saat penyerahan muatan listrik akan timbul arus listrik searah seperti yang terjadi pada baterai nuklir CPD. Baterai nuklir PN junction ini walaupun tegangannya rendah tapi arus yang dihasilkan jauh lebih besar dari pada baterai nuklir lainnya. Sumber radioisotop yang digunakan adalah Prometium 147 (Pm147) yang mempunyai waktu paro 2,5 tahun, sehingga umur pakai baterai nuklir jenis ini bisa mencapai 5 tahun. Bagan baterai nuklir PN junction ini dapat dilihat pada Gambar 3.
Baterai nuklir termokopel
Baterai nuklir jenis ini memanfaatkan panas yang ditimbulkan oleh radioisotop yang ditempatkan pada bagian dalam wadah yang dilengkapi dengan dua jenis logam yang bersifat sebagai termokopel. Arus yang timbul dari adanya termokopel dapat menjadi tenaga baterai. Bagan baterai nuklir jenis termokopel dapat dilihat pada Gambar 4.
Baterai nuklir “secondary emitter”
Baterai nuklir jenis ini menggunakan radioisotop yang dapat menumbuk bahan target yang peka terhadap radiasi, sehingga akan menimbulkan elektron sekunder akibat tumbukan tersebut. Elektron sekunder ini akan dikumpulkan oleh elektrode yang tidak peka terhadap radiasi. Perbedaan tegangan pada kedua elektrode tersebut akan menghasilkan arus listrik yang besarnya proporsional dengan energi yang dibawa oleh elektron sekunder.
Baterai nuklir fotolistrik ini memanfaatkan sifat bahan sintilator yang akan mengeluarkan pendar cahaya (foton) bila terkena radiasi. Pendar cahaya (foton) yang timbul kemudian diubah menjadi tenaga listrik oleh bahan semikonduktor yang peka terhadap foton cahaya. Foton cahaya dapat juga diubah menjadi tenaga listrik oleh sel fotolistrik. Bahan sintilator yang digunakan dapat berupa Posfor, Natrium Iodida yang diberi Thalium. Gambar 6 menunjukkan skema baterai nuklir jenis fotolistrik yang dimaksud.
Baterai nuklir “photon junction”
Baterai nuklir ini menggunakan posfor radioaktif (P32) sebagai sumber radioisotopnya yang diapit oleh bahan semikonduktor. Bahan semikonduktor diletakkan berhimpitan dengan “semiconductor surface layer” agar dapat terjadi perpindahan “electron hole” akibat terkena radiasi P32. Adanya perpindahan electron hole pada bahan semikonduktor ini akan menimbulkan pulsa listrik yang besarnya sama dengan energi pendar cahaya yang terjadi. Tegangan baterai nuklir ini relatif konstan. Gambar 7 menunjukkan skema baterai nuklir jenis “photon junction”.
Keuntungan Aplikasi Radioisotop di Bidang Energi
Menghasilkan energi yang sangat besar
Tidak menghasilkan unsur berbahaya, seperti logam berat (cadmium, plumbum, arsen, argentum/perak, vanadium), emisi gas SOx, NOx, dan VHC
Membantu mengurangi hujan asam dan pembatasan emisi gas rumah kaca
sedikit menghasilkan limbah padat (selama operasi normal).
Biaya bahan bakar rendah - hanya sedikit bahan bakar yang diperlukan.
Ekonomis
Kerugian
Resiko kecelakaan nuklir - kecelakaan nuklir terbesar adalah kecelakaan Chernobyl (yang tidak mempunyai containment building).
Limbah nuklir - limbah radioaktif tingkat tinggi yang dihasilkan dapat bertahan hingga ribuan tahun.


Sistem Pengaman
Agar keamanan dapat terjamin, sebuah reaktor harus dilengkapi dengan sarana pengontrol reaksi berantai dan sarana pendingin serta sarana pengolahan bahan bakar. Berbeda dengan reaksi kimia biasa, reaksi nuklir terjadi secara terus menerus/berantai. Energi yang dihasilkan ditentukan dari kecepatan terjadinya pemecahan inti atom. Dalam mengontrol terjadinya reaksi ini, neutron yang mempunyai kecepatan tinggi harus diperlambat, hal ini dapat dilakukan dengan bahan yang disebut moderator. Beberapa contoh moderator adalah H2O (light water), D2O (heavy water), graphite dan lain-lain. Selain itu ada pula yang dinamakan absorber yang berfungsi untuk menyerap neutron seperti Boron, Xenon dan sebagainya. Dengan mengontrol kadar moderator kita dapat mengontrol reaksi nuklir.
Sarana lain yang tidak kalah pentingnya adalah pengontrol panas dari reaktor. Sebuah reaktor nuklir akan bekerja normal apabila berada dalam keseimbangan panas (thermal equilibrium). Biasanya masalah ini dapat ditanggulangi oleh bentuk dan struktur reaktor itu sendiri yang memungkinkan panas dapat dialirkan dan dihilangkan secara alamiah. Perubahan beban kerja akan mempengaruhi reaksi sehingga akan mempengaruhi panas yang terjadi. Meskipun demikian, selama perubahan ini terjadi secara perlahan-lahan keseimbangan panas reaktor akan tetap terjaga. Dalam desain permulaan harus diperhitungkan perubahan panas yang terjadi pada saat-saat darurat, dalam hal ini mungkin diperlukan tambahan alat pendingin.
Bagian penting lainnya adalah sungkup reaktor. Bagian luar reaktor harus dibangun lapisan yang kuat, lapisan ini berfungsi untuk menjaga reaktor dari gangguan luar dan sekaligus untuk menjaga agar radiasi dapat dikurung di dalam sungkup reaktor saja apabila terjadi kebocoran dalam reaktor.
Desain seluruh sistem pengaman ini ada beberapa kriteria penting yang harus dipenuhi, misalnya single failure criteria, dimana kegagalan satu bagian tidak boleh mengakibatkan kegagalan bagian lain, dan multi barrier concept atau sistem pengaman berlapis. Perkembangan teknologi modern yang pesat belakangan ini, terutama dalam bidang komputer adalah sangat besar artinya dalam menjamin terpenuhinya kriteria-kriteria ini. Kegagalan dapat saja terjadi, namun dengan bantuan komputer tiap kesalahan dapat dideteksi dengan cepat dan langkah-langkah yang perlu dapat diambil sedini mungkin untuk menghindari kegagalan total.
Aplikasinya di Indonesia
Indonesia saat ini memiliki tiga reaktor riset. Pengoperasian dan perawatan ketiga reaktor itu memberikan pengalaman berharga bagi kita guna menuju ke era listrik nuklir. Perlu diketahui, pengoperasian reaktor riset jauh lebih sulit dan rumit dibandingkan PLTN. Adapun desain suatu PLTN yang dikembangkan di Indonesia berpedoman pada filosofi ”Defense in Depth”(pertahanan berlapis) untuk keselamatan yang mampu mencegah insiden yang mungkin dapat menjalar menjadi kecelakaan.
Adapun tiga reactor riset ini adalah sebagai berikut :
PPPLR - BATAN , PPPLR berfungsi untuk mengolah limbah radioaktif yang berasal dari berbagai Pusat Penelitian Tenaga Nuklir, BATAN, dan yang berasal dari penggunaan radiasi dan radioisotop di berbagai instansi di luar BATAN. Sarana dan fasilitas pengolahan limbah radioaktif ini dapat pula digunakan dan pengembangan teknologi pengolahan limbah radioaktif, serta untuk pelatihan bagi penyediaan tenaga ahli dalam pengelolaan limbah PLTN mendukung keselamatan pemanfaatan teknologi nuklir. PPPLR bertugas pula melakukan pemantauan radioaktivitas lingkungan di sekitar kawasan Puspiptek, Serpong dan pengawasan keselamatan radiasi pekerja radiasi di berbagai Pusat Penelitian Tenaga Nuklir di Serpong.
PPPN - BATAN , Dengan semakin meningkatnya pengembangan fasilitas nuklir, terutama dengan didirikannya reaktor G.A.SIWABESSY dan laboratorium penunjangnya di Kawasan Serpong, peningkatan kemampuan perawatan komponen mekanik, instrumentasi, bekerjanya sistem instalasi menjadi semakin penting pula, yang kesemuanya berstandar nuklir. Untuk keperluan tersebut di atas, BATAN telah membentuk Pusat Pengembangan Perangkat Nuklir. Tugas PPPN tidak hanya melakukan perawatan saja, tetapi juga memproduksi komponen proses, instrumentasi, perekayasaan, jaminan kualitas, serta penelitian dan pengembangan. PPPN diharapkan dapat mengembangkan kemampuan dalam pembuatan komponen proses, kerangka baja, instrumentasi, jasa jaminan kualitas, penelitian dan pengembangan, jasa perencanaan suatu sistem, yang kesemuanya berdasarkan standar internasional. Instrumentasi Pusat Pengembangan Perangkat Nuklirdilengkapi laboratorium elektronik yang cukup handal. Berbagai alat ukur elektronik, sarana untuk melakukan percobaan sampai dengan produksi PCB (Printed Circuit Board) tersedia. Beberapa produk yang telah dihasilkan antara lain : Sistem Pengamanan Instalasi Cyclotron Survey meter untuk monitor tingkat radiasi Monitor Perorangan Sistem Pencacah Radiasi Sistem Pencacah Radio Immunoassay Renograf untuk pemeriksaan fungsi ginjal Pengukur grameter kertas, dan lain-lain Di samping untuk memenuhi kebutuhan BATAN, PPPN juga dapat memberikan pelayanan instrumentasi yang diperlukan dalam dunia industri, serta sistem keamanan lingkungan. Desain dan Rekayasa Pembuatan Dokumen Desain mempunyai peranan penting dalam membawa hasil prototip penelitian dan pengembangan peralatan nuklir ke industrial/commercial grade instrument. Untuk kegiatan tersebut, digunakan paket software NISA II dan fasilitas CADD dengan 2 buah plotter ukuran A0. Kegiatan bidang desain pada saat ini terutama dititikberatkan pada pengembangan desain peralatan tambahan yang diperlukan pada RSG-LP. Jaminan Kualitas PPPN telah berpengalaman dalam melaksanakan kendali kualitas, terutama dalam proyek pembangunan instalasi BATAN di Kawasan PUSPIPTEK Serpong seperti Instalasi Pengolahan Limbah Radioaktif, Instalasi Produksi Radioisotop, Instalasi Produksi Elemen Bakar Nuklir, dan Instalasi Radiometalurgi. Divisi Jaminan Kualitas di PPPN selain bertanggung jawab dalam kendali kualitas untuk produk dan instalasi BATAN, juga melayani jasa untuk kepentingan industri. Penelitian dan Pengembangan Produk Penelitian dan pengembangan di bidang nuklir maupun instrumentasi dan komponen proses sebagai sarana penunjang telah lama dilakukan BATAN. Dalam bidang penelitian dan pengembangan tersebut PPPN bekerjasama dengan pusat-pusat lain di lingkungan BATAN dengan sarana instalasi thermohydrolik, laboratorium analisa korosi, alat penelitian sains dan materi, dan lain-lain. Letak PPPN yang berada di lingkungan PUSPIPTEK memberi kemudahan untuk bekerjasama dengan instansi lain, misalnya laboratorium uji konstruksi milik BPPT, laboratorium milik LIPI, dan lain-lain
PPRR - BATAN , Tujuan pokok Pusat Pengembangan Radioisotop dan Radiofarmaka adalah mengembangkan dan memproduksi Radioisotop dan Radiofarmasi dengan memanfaatkan jasa dari Reaktor Serbaguna G.A.SIWABESSY dan Siklotron. Untuk memproduksi Radioisotop digunakan tujuh buah Hot Cell yang letaknya berderet. Hot Cell pertama dan kedua masing-masing dipakai untuk memasukkan target pemeriksaan kerusakan wadah terget dan proses produksi radioisotop dan hasil belah uranium-235. Sedang Hot cell lainnya berfungsi sebagai proses daur ulang U-235, produksi sumber tertutup, pengolahan limbah radioaktif dan untuk dispensing. Bidang produksi radiofarmasi mempunyai beberapa fasilitas diantaranya dua buah Hot Cell, masing-masing berfungsi untuk pemuatan larutan Mo-99 ke dalam kolom untuk selanjutnya dirakit menjadi generator Tc-99m dan untuk penyimpanan limbah radioaktif. Pusat Pengembangan Radioisotop dan Radiofarmaka juga memiliki instalasi siklotron type Cs-30 dengan energi tetap yang memiliki 4 jenis partikel penembak masing-masing proton (26 MeV), deutron (15 MeV), Helium-3 (38 MeV), dan Helium-4 (30 MeV), untuk memproduksi radioisotop yang tidak dapat diproduksi dengan menggunakan Reaktor. Sebagai tahap awal, diproduksi dua jenis isotop, yaitu : Tl-201 dan Ga-67, yang banyak digunakan dalam studi kardiologi, lokalisasi tumor, dan inflamasi. In-111 dan I-123 akan diproduksi sebagai langkah berikutnya. Guna memperoleh kualitas produk sesuai dengan persyaratan, digunakan program jaminan kualitas sebagai petunjuk yang harus ditaati dalam melaksanakan seluruh tahap proses, meliputi : peralatan, kualifikasi personel, hygiene, sistem dokumentasi, pengujian kualitas, serta sistem keselamatan dan keamanan. Terhadap prosedur produksi juga telah diterapkan GMP (General Manufacturing Procedure) seperti yang diwajibkan oleh Departemen Kesehatan. Disamping pekerjaan-pekerjaan tersebut, dilakukan pula penelitian dan pengembangan produk guna menunjang pengembangan jenis produk dan teknologi produksi, dengan memanfaatkan berbagai peralatan mutakhir seperti Infrared Spectograph, Emission Spectograph, X-Ray Diffractometer, Atomic Absorbtion Spektrophotometer, Sulfur Analyzer Chromatograph, dan peralatan pengukur radiasi.

BAB III
PENUTUP
Energi nuklir merupakan salah satu alternatif utama pengganti sumber energi tak terbarukan yang saat ini paling banyak digunakan (minyak bumi, gas alam dan batu bara). Mengingat terbatasnya ketersediaan sumber daya migas & batubara, yang semakin hari semakin menipis, menjadikan energi nuklir sebagai alternatif tak terhindarkan jika kita melihat banyaknya keuntungan yang diperoleh melalui perbandingan. Penggunaan energi nuklir sangat menguntungkan, khususnya dalam pembangkitan energi listrik apabila digunakan dalam batas-batas yang wajar dan sesuai dengan regulasi (peraturan) yang telah disepakati secara internasional.
Di samping itu, penggunaan energi nuklir akan berdampak pada penghematan bahan bakar fosil dan perlindungan lingkungan. Pembangkitan listrik bertanggungjawab atas 25% konsumsi bahan bakar fossil dunia. Dengan menggunakan energi nuklir untuk menghasilkan listrik akan mengurangi perlunya membakar bahan bakar ini, sehingga cadangannya dapat bertahan lama. Tidak seperti halnya uranium yang digunakan untuk bahan bakar reaktor-reaktor nuklir saja, maka minyak, gas dan batu-bara merupakan stok bahan baku serbaguna yang potensial dan yang sekarang digunakan bagi industri kimia dunia. Dari industri ini dihasilkan plastik, obat-obatan sintetik, bahan-bahan pewarna dan banyak produk-produk lain pada mana kita menyandarkan diri. Minyak memberikan bahan bakar yang kompak dan menyenangkan untuk transportasi dan bila habis kebutuhan bahan bakar cair dari gas dan batu-bara akan meningkat. Alternatif jangka panjang mungkin hidrogen, yang akan diproduksi dari air menggunakan listrik nuklir, atau, untuk angkutan jalan dan kereta api, sebagai propulsinya langsung menggunakan listrik.
Dengan menghemat bahan bakar fossil dunia, PLTN secara langsung memberi manfaat kepada negara-negara berkembang. Makin besar sumbangan nuklir, makin rendah laju peningkatan harga-harga bahan bakar fossil. Karena, biaya energi yang tinggi berarti bahwa makin banyak usaha diberikan dalam mendapatkan energi dan makin sedikit dihasilkan barang dan jasa. Sumber daya yang telah dibebaskan dapat digunakan untuk menghasilkan barang-barang atau untuk tujuan-tujuan sosial-ekonomi.
DAFTAR PUSTAKA
Akira Imoto, IAEA activities in support of rising expectation for the role of nuclear power in developing countries, AESJ, Japan, November, 2006.

Badan Tenaga Nuklir Nasional, Energi nuklir sebagai bagian dari sistem energi nasional jangka panjang, 2003.

Book of presentations of Tokyo tech COE-INES-Indonesia International Symposium 2005 , Prospect of Nuclear Energy in Indonesia, Bandung, Indonesia, 2005.

Kusnowo, Arlinah, Aplikasi teknik nuklir, Makalah kapita selekta jurusan teknik fisika, Institute Teknologi bandung, April 2004.

Undang-undang Republik Indonesia No. 10 Tahun 1997 tentang Ketenaga Nukliran.

Permana, Sidik, Energi Nuklir dan Kebutuhan Energi Masa Depan (Era Renaisans Energi Nuklir Dunia dan Energi Nuklir Indonesaia), Majalah Inovasi Vol 5/XVII/November/2005, PPI Jepang, 2005.

West, J.M. and W.K. Davis, 2001, The creation and beyond: Evolutions in US nuclear power development, Nuclear News, June 2001.

http://www.icjt.org/an/tech/jesvet/jesvet.htm

http://www.aboutnuclear.org/view.cgi?fC=Electricity,Global_Map_of_Nuclear_Power_Plants

1 komentar: